Submitted by floppy_llama t3_1266d02 in MachineLearning
JustOneAvailableName t1_jea2dzf wrote
Reply to comment by EquipmentStandard892 in [R] LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention by floppy_llama
Software engineer perspective on attention (self quote):
> You have to think about searching. If you search, you have a query (the search term), some way to correlate the query to the actual (size unknown/indifferent) knowledge base and the knowledge base itself. If you have to write this as a mathematical function you have to have something that matches a query, to how similar it is to some key and then return the corresponding value to that key. The transformer equation is a pretty straightforward formula from that perspective. Each layers learns what it searches for, how it can be found and which value it wants to transfer when requested.
RWKV changes this by removing the query. So data is not requested anymore, only pushed. I am frankly surprised to seems to work thus far. Pushing data (self determining how important something is for something else) is not dependant on other states, enabling it to be a RNN.
Edit: step I need to mention: in RWKV importance also fades over time, so it has a recency bias
EquipmentStandard892 t1_jeaqt6u wrote
I've already had that in mind, I've found some interesting paper talking about integrating LLMs in a specific way designed to handle autonomous task execution given an direct objective/goal. Combining this with this RNN approach seems to be the go to for increase the cognitive development of the whole system. Using the RNN as our subconscious would do and indexing this into a vector space capable of hybrid search, or something like SPLADE search engines, or even build a neural attention graph network to store the rules that aggregate the raw tokens into the vector space, could drastically improve the performance of small language models, maybe leading to further optimization beyond the token limit span.
Article about integrating memory and task/objectives using multiple LLM instances: https://yoheinakajima.com/task-driven-autonomous-agent-utilizing-gpt-4-pinecone-and-langchain-for-diverse-applications/
Viewing a single comment thread. View all comments