Viewing a single comment thread. View all comments

schwah t1_jby3w3r wrote

Okay fair enough, it's not as simple as 10^170 > 10^80.

But I don't think your math makes much sense either. You can't just count the number of isotopes - nearly all of the universe is hydrogen and helium. And even with compression, it is going to take a lot more than 1 bit to represent a board state. Memory (at least with todays technology) requires billions of atoms per bit. And that is only memory - the computational substrate is also needed. And obviously we are ignoring some pretty significant engineering challenges of a computer that size, like how to deal with gravitational collapse.

I'll grant that it's potentially possible that you could brute force Go with a Universe-o-tron (if you ignore the practical limitations of physics), but it's definitely not a slam dunk like you're implying.

4

SuperNovaEmber t1_jbymjai wrote

Oh dear. You miss the most important. Which I did not mention. I figured you know?

Every empty point in space is theoretically capable of storing an atom, give or take.

Most of space is empty. The calculation of all the observable atoms 'brute forced' into all possible voids?

That's really the point, friend. You're talking combinatorics of one thing and then falsely equalizing with simply number of atoms?? Not the possible combinations of those atoms?? Which far exceeds the visible signs of your awakening?? It's not even astronomically close, bud.

In theory, a device around the size of a deck of cards contains more than enough energy to compute to end game.

The "observable" universe operates at an insanely high frequency. Consider the edge of the universe is over 10 orders of magnitude closer than the Planck length, using meters of course.

We're 10 billion times closer to the edge of the universe than the fabric of reality.

−6

schwah t1_jc0jztm wrote

No, you are confused. Of course the universe has many more potential states than a Go board... A Go board is just a 19x19 grid. But the number of possible states of matter in the universe is not relevant. There is still not nearly enough matter to represent every Go state simultaneously in memory, which is what would be required for an exhaustive search of the game tree.

6