Viewing a single comment thread. View all comments

shikuto t1_j8ju7er wrote

I’m going to jump into the meat of what you really want to know.

>The question being, we're able to describe the physical wavelength in nanometers of these waves that apparently aren't oscillating in space so much as they oscillate between electric and magnetic fields. ...how do you assign a unit of length to that?

How to assign a length? Light has a speed. 299,800,000 m/s. Now take a frequency. Let’s say 60Hz, because electricity in the US. That means that one cycle has a period of 1/60s. Multiply the speed of light by the period of the wave, and you get the wavelength. In this example, the wavelength of 60hz light is 4,966,666 meters. That’s a super long radio wave.

Visible light? Let’s say 600THz. The period is 1/600,000,000,000,000 of a second. This gives us 2.988e8 / 6e14, evaluating to 4.98e-7 meters. This is 498nm, something blueish.

11

shikuto t1_j8m1s0f wrote

u/Grand-Tension8668

Sorry to tag you here in a response to myself like this. I can see the email that Reddit sent me when you made the comment response to my previous comment… but it doesn’t show up on any Reddit client I can find.

Anyhow, something to consider is that the fields that the waves are imposed on (there’s a lot to unpack in that statement) ABSOLUTELY DO exist in the three dimensions of space. That’s the only reason that we’re able to apply spatial dimensions to these waves in the first place. So yes. The things that are waves do exist, spatially.

That’s funky. What do I mean by that? Well… a photon is a particle. But it isn’t matter. It has no mass. It is the carrier of the electromagnetic force. The force itself. Now, electrons and protons that do have mass? They’re matter. They’re both carriers of electrical charge. Charge by itself isn’t a force.

This is all going to be over-simplifying things quite a bit, but bear with me. You need to understand at a simplified, incorrect level before you can understand at a less simplified, slightly more correct level. And that’s how it goes all the way up, since the way science works is that every scientific law or theory includes the implication that it may be wrong, and at best is a tool for providing predictions or analyzing observed data.

On one side, you have a hill of negatively charged electrons. On the other side, a hill of positive protons. In the middle, a flat plain of neutrons, with no electrical charge. The protons “want” to meet up with the electrons, just as much as the electrons “want” to pair with the protons. The power of the “wanting” on both sides is the force. That force is mediated/carried by photons.

That space between the protons and electrons is still extant, in the 3D world. The protons and electrons are both the result of excitations/waves in various different fields. The fields come before the particles, at least so far as we can tell.

2