kemisage

kemisage t1_j6951hz wrote

Sorry, I am not really familiar with photocatalysis besides my experience with catalytic adsorption of CO2 (no photochemical activation). I worked mostly on homogeneous and heterogeneous thermocatalytic pathways that integrate the CO2 capture and conversion processes, like the one proposed in OP. The photocatalysis group at my company was a lot more connected to and focused on academic research. I believe they were using Cu, Ni, Fe and other metals in the vicinity in their work, even though Ru probably exhibits the highest catalytic activity in general.

It's quite interesting that it can produce hydrocarbons to that length. I have only ever heard of CO and CH4 production via photocatalysis. There was a lot of emphasis on the importance of oxygen vacancies in the research I have heard of (same as it was with thermocatalytic adsorption).

One of the major reasons for contradictory behavior in this domain (again, same as in the case of adsorption) is that many people focus too much on the effect of metals on catalytic activity and selectivity. The support structure plays too big of role to ignore (for example: see this and this), but it's been changing in the recent years, so that's good news.

Anyway, good luck with your theses, both Master's and PhD.

2

kemisage t1_j68fio2 wrote

>I'm actually about to start my PhD researching the hydrogenation of carbondioxide over ruthenium

Nice! I have worked on this until I moved quite recently from the R&D organization in my company to the commercial/sales org. I can't reveal the exact information, but maybe a couple of pointers could help you.

Since you said ruthenium, are you gonna be working with Ru-Macho or its derivatives? The focus of industrial R&D has been (heavily) on using catalysts based on Fe, Mn, and Ni. Cost and abundancy are the factors here. I'd suggest, if possible, to design the equivalent catalyst structure using these cheaper metal ions once you do your initial testing with Ru-based catalysts.

We have noticed a spectacular lack of awareness among different research groups in considering the information published by other groups. This is with respect to the mechanism of CO2 conversion to formic acid, dimethylamine, methanol, etc. A couple of prominent groups have proposed their mechanisms and have focused their observations around their mechanisms, but there are reports out there of contradictory behavior that doesn't match with their proposed mechanisms. I have personally done detailed modeling for the entire mechanistic chain and found that the most widely cited mechanisms are only partially correct. They leave out important information and/or are wrong about the rest of the reaction mechanics.

I know it was a very general description, but don't take the published information on its face value (even if it's from "famous" scientists in the domain). This area is still so new that nobody is 100% correct.

2

kemisage t1_j689tkh wrote

>I don't think it's chemically as easy as "take oxygen out and connect the carbon" do you have sources for the actual reaction and catalysis?

So are you asking for the actual mechanism and the catalyst used? It's different based on which catalyst is used, and there are also several different mechanisms proposed for the formation of carbon-carbon bonds. So it's still up for debate.

The initial dehydration of methanol is actually the easiest step. Such dehydration is performed with many different oxygenates in the industry using either acid-based catalysts or alumina. What comes after is where the debate exists as to what actually happens. That part has been known to be quite efficient using a specific zeolite as a catalyst.

>It's probably patented that's why the websites don't tell

Exactly. There are quite a lot of patents on the catalysts and the process technology. No matter which is used, converting methanol to gasoline is done in a reactor train, so 2-3 reactors are running in parallel with one of them being stopped for catalyst regeneration every now and then while the other two are running.

So far the way we have been designing these plants is to first convert carbon dioxide and hydrogen (or in the case of blue plants, it's natural gas + carbon capture) to synthesis gas (a mixture of carbon monoxide and hydrogen), which is then converted to methanol (or methanol and dimethyl ether) and then subsequently to gasoline. This may also be followed by an upgrading step. The end-result is usually around 85-90% gasoline and 10-15% LPG.

There is plenty of literature if you search for "methanol to gasoline reaction" (example: this), but the source for the overview given above is me. I design this process (and others) for a living.

Edit:

If the technology mentioned in OP can be scaled up and has a high conversion (and rate) for CO2 to methanol, it will bring down the capital costs by a lot. That's why there has been plenty of work on this topic for years now.

The conversion of either natural gas or CO2 to synthesis gas is quite expensive, the most capital-intensive step in the production of gasoline through this route. If it can eliminated (along with another expensive step of separating CO2 from the capture solvent), the economics would become significantly more favorable.

2

kemisage t1_j66dadl wrote

It has become tiring to see/read comments on posts like this. It's nearly always by people with little to no knowledge of chemistry and chemical engineering and/or the reality of the green energy economy.

One of the top comments is usually something in the realm of "plant trees, use solar/wind, no need for carbon, etc."

No, you can't just plant tress and avoid technologies like the one proposed in the article. Find a way to electrify everything and produce all the chemicals we need without using carbon. Then we can talk about eliminating carbon from our lives.

The idea presented in the article is actually not really new. They just went a bit dramatic with their advertisement. The group of Heldebrandt themselves (the ones discussed in the OP) have published many articles on this topic, and others have too. I am yet to fully read the actual journal article they published, but the likely cause of this popular science article is higher efficiency in converting the captured CO2 to methanol.

If their idea goes through more testing at increasing scales, then it could be implemented in the industry. Right now the commercial route to produce blue (fossil hydrogen + natural gas + carbon capture) or green (renewable hydrogen + carbon capture) methanol from CO2 is an indirect route of first converting CO2 to something called a synthesis gas and then converting the synthesis gas to methanol. If the intermediate step can be eliminated, it would lead to better energy efficiency and economics.

1