Zouden

Zouden t1_j7u7gbv wrote

> I seriously doubt that the biology field is wholly saturated with ai engineers

It's not saturated at all. But from the tone of your comments it sounds like you think biotech companies haven't thought about hiring AI engineers, which isn't the case. Of course they see the benefit of engineers. Have you looked to see if Recursion is hiring?

1

Zouden t1_iwb8s6j wrote

All genes are inherited the same way.

The difference between a recessive or dominant disorder is down to the actual function of the protein encoded by the gene in question; this in turn determines whether a loss of one copy of a gene (remember we have two of each) is sufficient to cause a problem. In many cases, losing function of one gene isn't a big deal because we have the other as a backup. Only when you lose two does disease occur. We call that recessive.

With dominant mutations, losing one is enough to be problematic. This is common in genes that encode for structural proteins, where you need every bit to work correctly.

An interesting case is the sickle-cell mutation of the hemoglobin gene. One copy of the mutation confers resistance to malaria, but two copies causes sickle-cell anaemia. The malaria resistance is a dominant trait, while sickle-cell anaemia is recessive.

1

Zouden t1_ivu5mjs wrote

But that's a recessive disorder, meaning the presence of some mutated protein isn't sufficient to cause disease. I believe /u/FedXFtw is asking about diseases where even some faulty protein is sufficient to cause disease even if healthy proteins are present.

For that I would look at dominant disorders, like those involving structural proteins such as collagen. In Ehlers-Danlos syndrome, a mutation in one copy of a collagen gene is sufficient to weaken the collagen structures.

2